HOPEWIND

Catalog VFD-HV500 Serise High Performance VFD

www.hopewind.com

HV500 – High Performance VFD

Product Overview

Based on the superior control performance of the HD2000 engineering VFD, the HV500 is a high-performance VFD with product concepts of "universal", "easy to use" and "durable" for medium/high-end industrial and single-drive applications.

HV500 is widely used in metallurgy, lifting equipment, papermaking, chemical, mining, textile, shore power and energy storage industries.

-

Metallurgy

Textile

Lifting

Chemical

Papar Making

• Description

F	IV500	 A0	4	T	00075	B	+STO
VFD Name: HV500: hopeVert Serise High Performance VFD							
Circuit topology and coolin A0: Two-Quadrant Air-Cooling	-						
Voltage: 2: 220V 4: 380V 6: 690V							
Phase: D: 1P/3P T: 3P							
Power Rate: 00075: 7.5kW 00150: 15kW							
Brake Unit: B: With In-build Brake Unit Blank: Without In-build Brake U	Unit						
STO: STO: With STO function Blank: Without STO function]	

Technical Specification

General Specification

	Input U _{in}	200V (-15%) ~240V (+10%) 500V (-15%) ~690V (+10%)			
ilpout/output	Input Frequency	50Hz/60Hz±5%			
ilnput/output Power	Unbalance Degree of U _{in}	≤3%			
	Output U _{out}	0V~Input U _{in}			
	Output Frequency	0Hz~500Hz			
	Motor Type	Asynchronous / Synchror			
	Control Method	V/F, OLVC (Open-Loop Ve			
	Range of Speed Regulation	1:10 V/F, 1:100 OLVC, 1:1			
	Start Torque	VF: 100% (0.5Hz), OLVC: 1			
	Torque Precision	≤5%, Vector Control			
	Torque Pulsation	≤5%, Vector Control			
Control	Speed Regulation Precision	OLVC 0.2%, CLVC 0.01%			
Performance	Torque Response	<5ms, Vector Control			
	Dynamic Speed Reduction	OLVC<0.5%*s, CLVC<0.3%			
	Acceleration and Deceleration Time	0.0s~3200.0s, 0.0min~320			
	Torque Lifting	0.0%~30.0%			
	Overload	Heavy Load Application 1			
	V/F Curve	Multiple ways: linear V/F power, 1.6 power, 1.4 pow			
	Input Frequency Accuracy	Digital: 0.01Hz, Analog: (
	Acceleration and Deceleration Curve	Straight, S Curve			
	Multiple Speed-Steps Operation	16-Speed Steps Operatio			
Control Performance	Automatic VoltageAdjustment (AVR)	Keeping the output volta range			
	Fixed Length	Setted and Fixed Length			
	In-build PID	It Can Easily Constructed			
	Enhencement Function	Free Function Block			
	Set Frequency	Keyboaed, UP/DOWN Te			
	Analog Input Terminals	AI1: 0V~10V/-10V~10V, A			
	Digital Input Terminals	DI1-DI6, 6 programmabl			
ilnput/output	Digital Input/Output Terminals	DIO1: Fast pulse output,			
Power	Anolog Output Terminals	2 Strings 0V~10V/0 (4) m			
	Relay Output	2Strings Contact Type For			
	Motor Temperature Detection	Support PT100/PT1000/K			
	STO Interface	SIL3/PLe Safe torque shu			
Com	Com Protocol	Modbus RTU (Standard),			
	Altitude	Without Derating Operation			
	Operation Temperature	-25°C~+40°C (40°C~55°C D			
Environment	Humidity	15%~95%, Without Conde			
Linnorment	Vibration	3M3, IEC60721-3-3			
	Storage Temperature	-40°C~+70°C			
	Operation Place	Indoor, Without direct sur			
	Accessory	Encoding card, communi			
	Protection Function	Short circuit, over current, fault, etc.			
	Efficiency	5.5kW~22kW: ≥93%; Abov			
		Californi			
	Installation Method	Cabinet			
	Installation Method Protection Degree	IP20			

) 3Phase , 380V (-15%) ~480V (+10%) 3Phase,) 3Phase

nous

ector Control), CLVC (Close-Loop Vector Control)

1000 CLVC

150% (0.5Hz), CLVC: 180% (0Hz)

200.0min

150% 1min/5min, Light Load Application 110% 1min/5min curve, 5 kinds of torque reduction characteristic curve mode (2.0 power, 1.8 ower, 1.2 power), user-defined VF curve 0.01Hz

on through control terminals

age constant automatically when the grid voltage changes within a certain

Control

Closed loop control system

rminals, Multiple Speed-Steps Operation, Terminals Pulsation, Com

AI2: 0V~10V/0(4) mA~20mA

digital input terminals, optocoupler isolation, compatible with drain/source input

normal input/output; DIO2: fast pulse input, normal input/output

nA~20mA

rmC KTY84

utdown function

Pro ibus, CANopen, pro inet, Devicenet, Ethercat

on Within 2000m Altitude; 2000m~4000m, Each 100m lifting, Derating 1% (Current) Derating)

ensation

nlight, no flammable, corrosive gases, liquids and conductive particles

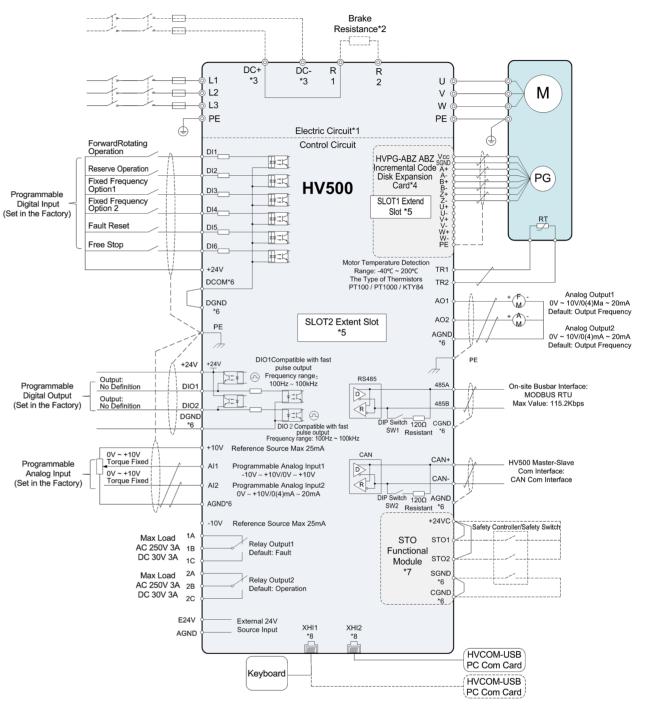
ication expansion card, voltage detection card

, overload, over voltage, under voltage, phase loss, over temperature, external

ve 30kW: ≥95%

Module List of Product

Specification


Module	Hea	ivy Load	Lig	ht Load	Size	
Module	Power (kW)	Output Current (A)	Power (kW)	Output Current (A)	SIZE	
	Ra	ated Voltage: 3Phase 22	OVac			
HV500-A02T00022B	2.2	13	4	17		
HV500-A02T00040B	4	17	17 5.5 25			
HV500-A02T00055B	5.5	25	7.5	32	F3	
HV500-A02T00075B	7.5	38	11	46		
HV500-A02T00110B	11	46	15	60	F4	
HV500-A02T00150	15	60	18.5	75		
HV500-A02T00185	18.5	75	22	91	F5	
HV500-A02T00220	22	91	30	125		
HV500-A02T00300	30	125	37	156	F6	
HV500-A02T00370	37	156	45	180		
HV500-A02T00450	45	136	55	166		
HV500-A02T00550	55	166	75	226	F7	
HV500-A02T00750	75	226	90	271		
	Rá	ated Voltage: 3Phase 38	OVac			
HV500-A04T00055B	5.5	13	7.5	17		
HV500-A04T00075B	7.5	17	11	25		
HV500-A04T00110B	11	25	15	32	F3	
HV500-A04T00150B	15	32	18.5	38		
HV500-A04T00185B	18.5	38	22	46	F4	
HV500-A04T00220B	22	46	30	60		
HV500-A04T00300	30	60	37	75		
HV500-A04T00370	37	75	45	91	F5	
HV500-A04T00450	45	91	55	125		
HV500-A04T00550	55	125	75	156	F6	
HV500-A04T00750	75	156	90	180		
HV500-A04T00900	90	180	110	210		
HV500-A04T01100	110	210	132	256		
HV500-A04T01320	132	256	160	310	F7	
HV500-A04T01600E	160	304	185	350		
HV500-A04T01600	160	310	200	387		
HV500-A04T02000	200	387	250	471	GL	
HV500-A04T02500	250	471	315	610		
HV500-A04T03150	315	610	400	750	HL	
HV500-A04T04000	400	750	450	815		
		ated Voltage: 3Phase 690				
HV500-A06T00450	45	54	55	63		
HV500-A06T00450	55	63	75	86	F6	
HV500-A06T00750	75	86	90	100	10	
HV500-A06T00750	90	100	110	131		
HV500-A06T01100	110	131	132	150	57	
	132	150	132	175	F7	
HV500-A06T01320						
HV500-A06T01600	160	175	200	231	~	
HV500-A06T02000	200	231	250	274	GL	
HV500-A06T02500	250	274	315	328		
HV500-A06T03150	315	328	400	426		
HV500-A06T04000	400	426	450	482	HU	

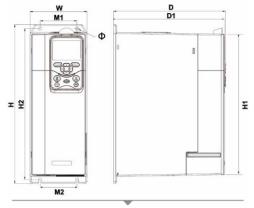
Note

1. Size F3 and F4 are equipped with built-in brake unit. For other size, if you need a brake unit, you need to add "B" at the end of the model to purchase.

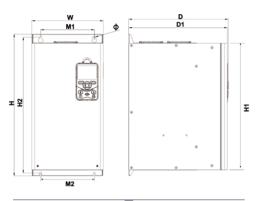
2. Size F5, F6, F7 VFDs are equipped with DC reactors. F3 and F4 VFDs are not equipped with DC reactors. Users can use DC reactors according to actual conditions. GU and HU do not have DC reactors. The user need to equiped an external input reactor. 3. 150% periodic overload under heavy load rated conditions; 110% periodic overload under light load rated conditions. Overload period is defined

as 1min overload every 5min Operaton.

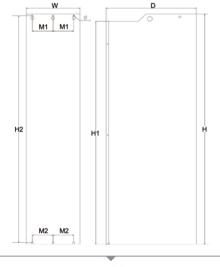
1. F3 and F4 frame size inverters are equipped with a braking unit and without a DC reactor; F5, F6, and F7 frame size inverters are equipped with a DC reactor, and GU and HU frame size inverters are without. The user needs to configure an additional input reactor, and the braking unit is optional before delivery.

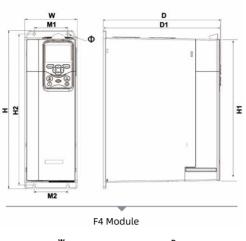

2. Before using the braking unit, set the "brake unit installation enable" bit to 1 to be effective. 3. The positive and negative bus terminals are reserved for some common bus applications. There is no soft start circuit in the subsequent circuit, and the soft start must base on customers's circuit.

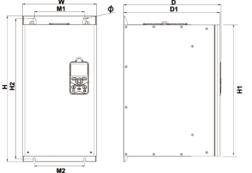
4. No code disc control circuit wiring is required when no code disc is controlled. The standard wiring diagram only shows the commonly used ABZ incremental code disc card wiring. Different types of code disc expansion cards can be selected according to the type of code disc. 5. The expansion card slot can be connected to different types of expansion cards such as code disk expansion card, communication expansion card, IO expansion card, etc. The expansion card does not require the location of the installation slot (SLOT1 and SLOT2). 6. DCOM is the common terminal of DI input, and the DI terminal can be configured as source input or sink input by changing DCOM to +24V, DGND or other external power supply.


7. STO function module can reach SIL3/PLe level, which is optional before delivery. 8. AGND, DGND and CGND are isolated from each other, AGND and DGND are ELV, CGND is SELV, SGND and CGND are the same safety level, if the users' STO interface uses external power supply, the safety level is lower than SELV, CGND safety level will reduce as well. 9. XHI1 is keyboard/PC interface and XHI2 is PC interface. XHI1 can be used for PC communication when XHI1 does not connect with the keyboard and XHI2 does not connected with the PC communication card.

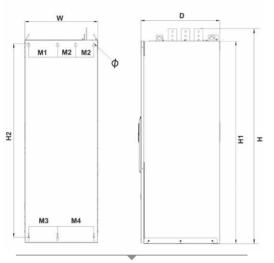
Power & Control Connection


Product Size





F5 Module



GU Module

F6、F7 Module

HU Module

HV500 Size Specification

Code	Structure Size (mm)						Installation Size (mm)						
Coue	W	Н	D	H1	D1	H2	M1	M2	М3	M4	M5	Φ	(kg)
F3	132	393	258	348	256	373	85	85	-	-	-	7	5.6
F4	132	441	298	394	296	421	85	85	-	-	-	7	7.7
F5	240	501	334	447	331	480	180	180	-	-	-	7	26.7
F6	295	593	386	534	383	570	200	200	-	-	-	9.5	50
F7	340	724	405	664	402	700	250	250	-	-	-	9.5	75
GU	325	1530	543	1482	-	1506	125	125	-	-	-	9	168
HU	502	1487	545	1400	-	1341	200	125	200	250	-	9	289

Input and Output Inductor

Module	Input Inductor		Output Reactor		Module	Input Ir	nductor	Output Reactor	
Module	Inductor (uH)	Current (A)	Inducotr (uH)	Current (A)	Module	Inductor (uH)	Current (A)	Inducotr (uH)	Current (A)
	220	V VFDs			380	IV VFDs			
HV500-A02T00022B	976	9	325	13	HV500-A04T00550	139	100	56	125
HV500-A02T00040B	537	16	249	17	HV500-A04T00750	102	137	45	156
HV500-A02T00055B	390	22	169	25	HV500-A04T00900	85	164	39	180
HV500-A02T00075B	286	30	111	38	HV500-A04T01100	70	201	33	210
HV500-A02T00110B	195	43	92	46	HV500-A04T01320	58	241	27	256
HV500-A02T00150	187	45	70	60	HV500-A04T01600E	48	292	23	304
HV500-A02T00185	152	56	56	75	HV500-A04T01600	48	292	23	310
HV500-A02T00220	128	66	46	91	HV500-A04T02000	38	365	18	387
HV500-A02T00300	94	90	34	125	HV500-A04T02500	31	456	15	471
HV500-A02T00370	76	112	27	156	HV500-A04T03150	24	575	11	610
HV500-A02T00450	62	136	27	156	HV500-A04T04000	19	730	9	750
HV500-A02T00550	51	166	23	180	690V VFDs				
HV500-A02T00750	37	226	20	210	HV500-A06T00450	561	45	235	54
	380	V VFDs			HV500-A06T00550	459	55	201	63
HV500-A04T00055B	1065	13	537	13	HV500-A06T00750	337	75	148	86
HV500-A04T00075B	781	18	411	17	HV500-A06T00900	281	90	127	100
HV500-A04T00110B	533	26	279	25	HV500-A06T01100	230	110	97	131
HV500-A04T00150B	391	36	218	32	HV500-A06T01320	191	133	85	150
HV500-A04T00185B	317	44	184	38	HV500-A06T01600	158	161	72	175
HV500-A04T00220B	266	52	152	46	HV500-A06T02000	126	201	55	231
HV500-A04T00300	255	55	116	60	HV500-A06T02500	101	251	46	274
HV500-A04T00370	207	67	93	75	HV500-A06T03150	80	316	39	328
HV500-A04T00450	170	82	77	91	HV500-A06T04000	63	402	30	426
					HV500-A06T04500	56	452	26	482

Performance Characteristics

HV500 VFDs Feature

Durability

· Satisfy 3M3 mechanical vibration during the load operation, and improve the durability of the product in the harsh situation of vibration such as the car, metallurgy, etc.

· Independent air duct design, seperated from sensitive components, and improve the adaptability to harsh environment.

Mechanical vibration level 3M3

6.

• Built-in dynamic junction temperature model, unique short circuit and other protection technology, enhence the safety of the products

· Three anti-paint and automatic spraying, single board and complete machine are fully automatic measurement100% aging testing, Comprehensive protection of product quality.

Performance characteristics

HV500 VFD characteristics

Versatility

 \cdot CE、cULus、STO International Certification Standard, Conform with RoHS.

· Support Open Loop V/F、Open loop vector control (OLVC) Close loop vector control (CLVC).

· Support asynchronous motor, permanent magnet synchronization motor , electric excitati synchronization motor and other motor drive control.

STO mm 1111-111

• Wide range of input voltage, Support 220V (200~240V)、380V (380~480V) and 690V (500~690V).

· Support industrial application buses such as Profibus DP, CANopen, Profinet IO, Modbus RTU, EtherCAT, ControlNet and DeviceNet, and easily realize the interconnection of various industrial equipment.

Feasibility

· Support external 24V DC input power, safe and fast debugging and application.

• Built-in brake units for easy wiring and saving installation space.

• "Book" type design, seamless side-by-side installation, saving installation space.

· LCD Display Panel, Support APP and hopeInsight software, Smart interconnection and monitoring, On - Line Commissioning and Debugging.

Excellent Control

Master-Slave Control

The master-slave control function is primarily designed for multi-machine applications and it supports rigid and flexible connections of the drive actuator. In the rigid connection, the master control the speed and the slave control the torque. In the flexible connection, the master and the slave both can control the speed. In masterslave control mode, the external control signal is only connected to the master, which controls the slave via a serial communication link.

Master

External Instrction

Torque Response

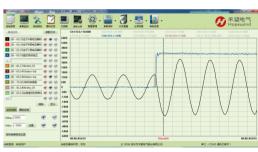
Technical

· Increase the torgue under the torgue control mode, Current response time 2ms.

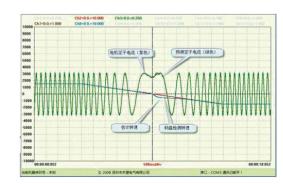
Compatible

· Excitation current and torque current highly decoupled, high load capacity wide range of speed regulation, excellent dynamic response.

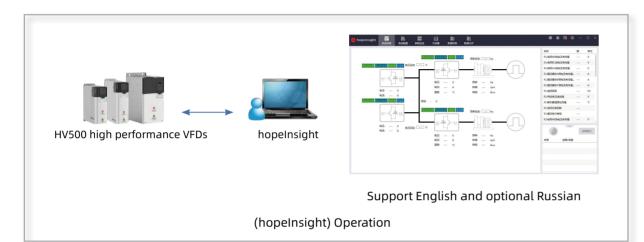
• Key technical points for magnetic chain observation


and speed estimation

· Using a full-order closed-loop magnetic chain observer, the motor speed and stator resistance are identified adaptively according to the estimated error of the stator current and the estimate of the rotor magnetic chain.


· Accurate magnetic chain observation and speed estimation model, guaranteed 0.5HZ 150% high starting torque in OLVC control mode, as well as open ring zerospeed hover function.

Support English and optional Russian



Support English and optional Russian

Quick debugging software hopeInsight

hopeInsight is a debug tool for the drive system design provided by Hopewind Electric, the VFDs are connected to the PC via optical fiber. The software has a large number of professional debugging functions, such as batch parameter settings, fault data download and waveform analysis, high-speed oscilloscope and a large number of editing functions. The software supports serial communication, and the inverter can be maintained through serial communication. Its working diagram is as follows:

V batch parameter settings

hopeInsight 冒 系统問題	Ro Roman	- <mark></mark> 参数直接	Film Referen	REAL REAL				•		•
—▲ 73.统计量		9810	名称			単位	泰小值	最大值	描述	93
▲ 75:主从模式 ▲ 30.25年度時望空空		O I1 - 56.01	电机控制模式1 设定值							
A 81:250 Ptt		0 11 - 56.03	电机控制模式2 设绘画							
■公理会社会28 ▲		0 11 - 56,04	RELIQUERES (25)							
▲ 83:保約门限实际值 ▲ 90.PPLink/57/配置		0 11 - 56.05	gallogier:(#al91							
		0 11 - 56.06	血乳冷制模式原表現2							
▲ 01:原店採用店舗										
-▲ 21:机型参数		11 - 56.07	当职主效的电机控制模式							
→ 25运行状态		0 11 - 56.11	VF曲视选择							
A 25/2/5/2/10/2017		O I1 - 56.12	VF曲线_简率基曲直			Hz	0.00	300.00		
▲ 26.微楽绘座探制		0 11 - 56.13	VF曲线_电压基曲道		1000	v	0	10000		
▲ 27:版率检查这择		0 11 - 56.14	自意文VF曲线_频率1			Hz	0.00			
—▲ 28 医空振率检查 —▲ 29 長辺振興		0 11 - 56.15	BOXVERS 4.E1			35	0.0			
A 30 EPOTER		0 11 - 56.16	自定ない(自任 振動2			Hz				
A 31:10:00		0 11 - 56.17	自立215曲後 由日2			5				
▲ 32.90%防治运探制										
▲ 33.46%后给应该排除		O I1 - 56.18	自定义VF曲线_原率3			Hz				
▲ 36/控制命令选择 ▲ 41:由務逻辑		O I1 - 56.19	自定义VF曲线_电压3			96				
▲ 44功変態元接口影響		0 11 - 56.20	自定文VF曲线 简素4			Hz				
▲ 46:明初即数		0 11 - 56.21	BRXVFEK 454			25		100.0		
▲ 47.與量参数		0 11 - 56-22	外部电压设定值			5	0.0	100.0		
▲ 51:制約単元		0 11 - 56.23	IPHYEVF 曲线起始频率			Hr	0.00	300.00		
- 57:VC2080										
▲ 60.開發機用20副機数		O I1 - 56.31	转起是开百分比			%	0.0	30.0	使能夠這是开創需要进行电信	ñ
A 61-041-0210019		n								

Powerful fault recording function, detailed event recording, greatly facilitate troubleshooting

hopeinsig	ht 🖬	R.				त्व 19न		0	8 16 3 -	
2件管理	波用i分析	御件記录	9407(m	#4011592	操作日本					282
					W中记像EventLog	-2017-11-16_1	1-11-44.jog			
新聞机器伴列号							定常获取时间	201	7-11-16 11:10:58	
序号	#81	日期	80141	*3		事件代码	事件名称	事件状态	DSP索引	
• 1	A_Alarm	2017-11-16	09.55:56	8.5	·新元1	1177	电网络电压欠压	1818	211	
0 2	S_Event	2017-11-16	09:55:56	128	御元	2220	整流状态切换至准备运行态		210	
• 3	A_Alarm	2017-11-16	09.55:56	2.1	0年元1	1177	电网络电压欠压	重位	209	
• 4	S_Event	2017-11-16	09:54:58	逆来	8単元1	2402	逆交歸傳机	置位	208	
• 5	S_Event	2017-11-16	09:54:42	建实	2単元1	2401	进会器运行	重位	207	
• 6	S_Event	2017-11-16	09.54;42	建立	(単元1	2402	进筑器体机	開設	206	
• 7	S_Event	2017-11-16	09.54:35	12.0	8巻元1	2401	法实践运行	1940.	205	
. 8	S_Event	2017-11-16	09.54:35	12:0	8単元1	2402	法定副律利	要位	204	
• 9	S_Event	2017-11-16	09:54:28	逆来	E単元1	2401	逆來難但行	蜀位	203	
• 10	S_Event	2017-11-16	09:54:16	逆束	8単元1	2402	逆交歸傳机	重位	202	
• 11	S_Event	2017-11-16	09:54:00	逆交	#元1	2401	进会测进行	重位	201	
• 12	S_Event	2017-11-16	09:53:16	逆变	#元1	2402	进会器体机	開行	200	
• 13	S_Event	2017-11-16	09.53.07	語の	8巻元1	2401	法实践运行	単位	199	
• 14	S_Event	2017-11-16	09.52:55	12.0	8単元1	2402	逆立器律机	要位	198	
• 15	S_Event	2017-11-16	09:52:47	(注意	8単元1	2401	逆衰變但行	要位	197	
• 16	S_Event	2017-11-16	09:52:41	逆来	e単元1	2402	逆交歸傳机	置位	196	
-										

V 12-channel high-speed software oscilloscope

Operation panel

HIC200-OP-10-W is a smart operator panel developed independently for highperformance transmission products, which is informative, friendly and easy to use, and according to the different configurations of the panel, it is divided into two kinds: WiFi function and without WiFi function, which are conveniently applied to high-performance, single transmission, multi-VFDs system, it can monitor and adjust the system.

Accessory

Optional	Module	
Keyboard Base	HVKMB	Depending on the situation
Communication Adapter	HVCOM-USB	The drive can achieve
Expansion Card of ABZ Incremental Code Disk	HVPG-ABZ	Cxpansion card of cod programmable power
Three-phase voltage detection module	HVVMU	Detect three-phase voltage a grid connection of perma
	HVCOM-DP	Support PROFIBUS DF
	HVCOM-PN	Support PROFINET IO
Communication	HVCOM-CA	Support CANopen c
expansion card	HVCOM-CN	Support ControlNet
	HVCOM-DN	Support DeviceNet
	HVCOM-EC	Support EtherCAT bu

Function n, the base can be installed in the specified position and the drive can be operated by operating the keyboard ve high-speed communication with the computer via this option de disks, it applied to ABZ signal output of incremental code disk, r supply and it is compatible with single/bipolar output code disc and provide information to system control, it can be used for soft start and anent magnet synchronous motor, speed tracking and other functions P communication O communication communication Used to realize the control, monitoring and diagnosis functions of the inverter by the master station communication communication us commnication

HV500 Optional accessory

Guanlong No.2 Industry Park, Xili Town, Nanshan District, Shenzhen, China, 518055 Tel: +86 189 4874 2347 Email: Globalsupport@hopewind.com en.hopewind.com

©2024: hopewind All rights reserved V4.0.7

